CAPAS DEL MODELO OSI
El nivel físico
o capa física se refiere a las transformaciones que se hacen a la secuencia de bits para trasmitirlos de un lugar a otro. Siempre los bits se manejan dentro del PC como niveles eléctricos. Por ejemplo, puede decirse que en un punto o cable existe un 1 cuando está en cantidad de volts y un cero cuando su nivel es de 0 volts. Cuando se trasmiten los bits siempre se transforman en otro tipo de señales de tal manera que en el punto receptor puede recuperar la secuencia de bits originales.
Definición
La Capa Física o Nivel 1 proporciona los medios mecánicos, eléctricos, funcionales y de procedimiento para activar, mantener y desactivar conexiones físicas.
Base teórica de la comunicación de datos
Variando algunas propiedades físicas, voltaje o corriente, se puede lograr el envio de datos mediante un cable. El comportamiento de la señal se puede representar matemáticamente como se describirá en las siguientes subsecciones.
Series de Fourier
Una serie de Fourier es una serie infinita que converge uniformemente a una función continua y periódica. Las series de Fourier constituyen la herramienta matemática básica del análisis de Fourier empleado para analizar funciones periódicas a través de la descomposición de dicha función en una suma infinitesimal de funciones senoidales mucho más simples (como combinación de senos y cosenos con frecuencias enteras). El nombre se debe al matemático francés Jean-Baptiste Joseph Fourier que desarrolló la teoría cuando estudiaba la ecuación del calor. Fue el primero que estudió tales series sistemáticamente, y publicando sus resultados iniciales en 1807 y 1811. Esta área de investigación se llama algunas veces Análisis armónico.
Es una aplicación usada en muchas ramas de la ingeniería, además de ser una herramienta sumamente útil en la teoría matemática abstracta. Áreas de aplicación incluyen análisis vibratorio, acústica, óptica, procesamiento de imágenes y señales, y compresión de datos. En ingeniería, para el caso de los sistemas de telecomunicaciones, y a través del uso de los componentes espectrales de frecuencia de una señal dada, se puede optimizar el diseño de un sistema para la señal portadora del mismo. Refierase al uso de un analizador de espectros.
Las series de Fourier tienen la forma:
Donde y se denominan coeficientes de Fourier de la serie de Fourier de la función
Definición de la serie de Fourier[editar]
Si es una función (o señal) periódica y su período es , la serie de Fourier asociada a es:
Donde y son los coeficientes de Fourier que toman los valores:
Por la identidad de Euler, las fórmulas de arriba pueden expresarse también en su forma compleja:
Los coeficientes ahora serían:
Limitación en el ancho de banda de las señales[editar]
La relación de lo presentado en la subsección anterior se puede ejemplificar mediante la transmisión del carácter ASCII "b", se va a transmitir la cadena binaria 01100010. El análisis de Fourier produce lo siguiente:
Al transmitir datos se pierde cierta potencia durante el proceso, ningún emisor lo puede evitar. Si todos los parámetros de Fourier disminuyeran en forma proporcional, la señal producida se reduciría en amplitud pero no se distorsionaría. La distorsión se provoca porque todas las plantas de transmisión disminuyen los componentes de la serie de Fourier en diferentes valores. Las amplitudes se emiten, en la mayoría de los casos sin ninguna atenuación desde 0 hasta (Usando el ciclo/seg o Hertz como unidad de medida) y todos los valores que superen este límite serán atenuados. El rango de frecuencias que se emite sin necesidad de atenuarse se lo conoce como ancho de banda. Este corte no se produce en forma abrupta en la práctica, el ancho de banda varía desde 0 hasta la frecuencia en la que el valor de la amplitud es disminuido a la mitad de su valor original.
Tasa de datos máxima de un canal[editar]
Artículo principal: Teorema de muestreo de Nyquist-Shannon
En 1924, Harry Nyquist trabajando para la empresa AT&T llegó a la conclusión de que un canal incluso perfecto tiene una capacidad de transmisión limitada1 Logro una ecuación que calcula la tasa máxima de un canal libre de ruido de ancho de banda finito. Shannon extendió en 1948 esta fórmula a un canal termodinámico, que tiene ruido aleatorio.
Nyquist demostró que si se emite una señal a través de un filtro que permita el paso de señales bajas de ancho de banda H, la señal puede ser recompuesta tomando 2H (exactas) muestras por segundo. Las señales que se pueden muestrear con una rapidez mayor a 2H veces por segundo ya han sido filtradas por lo que es inútil hacerlo.
Si la señal se compone de V valores discretos, el teorema de Nyquist establece:
tasa de datos máxima = 2H
Un canal de 3KHz no puede transmitir señales binarias a una tasa mayor de 6000 bps, por ejemplo.
Para un canal con ruido la situación se complica notoriamente, el ruido aleatorio causado por la temperatura siempre está presente a causa del movimiento de las moléculas del sistema. La relación señal a ruido es la cantidad de ruido térmico presente que se mide por la relación existente entre la potencia de la señal y la potencia del ruido. Si S es la potencia de la señal y N la potencia del ruido, la relación entre los valores es S/N y por lo general se usa la relación . Esta unidad se conoce como dB. La fórmula principal de Shannon es:
número máximo de bits/seg=
Shannon dedujo su resultado aplicando argumentos de la Teoría de la Información y es válido para cualquier canal con ruido térmico.2
Medios de transmisión[editar]
Artículo principal: Medio de transmisión
El medio de transmisión constituye el canal que permite la transmisión de información entre dos terminales en un sistema de comunicación.
Las transmisiones se realizan habitualmente empleando medios físicos y ondas electromagnéticas, las cuales se vuelven susceptibles al ser transmitidas por el vacío.
Entramado[editar]
La capa física le proporciona servicios a la capa de enlaces de datos con el objetivo que esta le proporcione servicios a la capa de red. La capa física recibe un flujo de bits e intenta enviarlo a destino, no siendo su responsabilidad entregarlos libre de errores. La capa de enlace de datos es la encargada de detectar y corregir los errores. Los errores pueden consistir en una mayor o menor cantidad de bits recibidos o diferencias en los valores que se emitieron y en los que se recibieron.
Un método común de detección de errores es que la capa de enlace de datos separe el flujo en tramas separadas y que realice la suma de verificación de cada trama. Cuando una trama llega a su destino se recalcula la suma de verificación. Si es distinta de la contenida en la trama es porque ha ocurrido un error y la capa de enlace debe solucionarlo.
Funciones y servicios de la capa[editar]
Las principales funciones y servicios realizados por la capa física son:
Envío bit a bit entre nodos
Proporcionar una interfaz estandarizada para los medios de transmisión físicos, incluyendo:
Especificaciones mecánicas de los conectores eléctricos y cables, por ejemplo longitud máxima del cable
Especificación eléctrica de la línea de transmisión, nivel de señal e impedancia
Interfaz radio, incluyendo el espectro electromagnético, asignación de frecuencia y especificación de la potencia de señal, ancho de banda analógico, etc.
Especificaciones para IR sobre fibra óptica o una conexión de comunicación wireless mediante IR
Modulación
Codificación de línea
Sincronización de bits en comunicación serie síncrona
Delimitación de inicio y final, y control de flujo en comunicación serie asíncrona
Multiplexación de Conmutación de circuitos
Detección de portadora y detección de colisión utilizada por algunos protocolos de acceso múltiple del nivel 2
Ecualización, filtrado, secuencias de prueba, forma de onda y otros procesados de señales de las señales físicas
La capa física se ocupa también de:
Configuración de la línea punto a punto, multipunto o punto a multipunto
Topología física de la red, por ejemplo en bus, anillo, malla o estrella
Comunicación serie o paralela
Modo de transmisión Simplex, half duplex o full duplex
Subcapa de señalización física[editar]
En una red de área local (LAN) o en una red de área metropolitana (MAN) que usa la arquitectura OSI, la subcapa de señalización física es la parte de la capa física que:
se relaciona con la subcapa MAC que es una parte de la capa de Enlace de Datos
realiza la codificación de caracteres, la transmisión, la recepción y decodificación
Fuente: Estándar Federal 1037C
Ejemplos[editar]
Ejemplos de protocolos[editar]
V.92 red telefónica módems
xDSL
IrDA capa física
USB capa física
Firewire
EIA RS-232, EIA-422, EIA-423, RS-449, RS-485
ITU Recomendaciones: ver ITU-T
DSL
ISDN
T1 y otros enlaces T-carrier, y E1 y otros enlaces E-carrier
10BASE-T, 10BASE2, 10BASE5, 100BASE-TX, 100BASE-FX, 100BASE-T, 1000BASE-T, 1000BASE-SX y otras variedades de la capa física de Ethernet
SONET/SDH
GSM interfaz radio
Bluetooth capa física
IEEE 802.11x Wi-Fi capas físicas
Ejemplos de equipos Hardware[editar]
Repetidor
Hub Ethernet
Módem
Nota: Capa física Asociado con la transmisión de cadenas de bits sin estructura sobre un enlace físico. Responsable de las características mecánicas, eléctricas y procedurales que establecen, mantienen y desactivan el enlace físico.
Definición
La Capa Física o Nivel 1 proporciona los medios mecánicos, eléctricos, funcionales y de procedimiento para activar, mantener y desactivar conexiones físicas.
Base teórica de la comunicación de datos
Variando algunas propiedades físicas, voltaje o corriente, se puede lograr el envio de datos mediante un cable. El comportamiento de la señal se puede representar matemáticamente como se describirá en las siguientes subsecciones.
Series de Fourier
Una serie de Fourier es una serie infinita que converge uniformemente a una función continua y periódica. Las series de Fourier constituyen la herramienta matemática básica del análisis de Fourier empleado para analizar funciones periódicas a través de la descomposición de dicha función en una suma infinitesimal de funciones senoidales mucho más simples (como combinación de senos y cosenos con frecuencias enteras). El nombre se debe al matemático francés Jean-Baptiste Joseph Fourier que desarrolló la teoría cuando estudiaba la ecuación del calor. Fue el primero que estudió tales series sistemáticamente, y publicando sus resultados iniciales en 1807 y 1811. Esta área de investigación se llama algunas veces Análisis armónico.
Es una aplicación usada en muchas ramas de la ingeniería, además de ser una herramienta sumamente útil en la teoría matemática abstracta. Áreas de aplicación incluyen análisis vibratorio, acústica, óptica, procesamiento de imágenes y señales, y compresión de datos. En ingeniería, para el caso de los sistemas de telecomunicaciones, y a través del uso de los componentes espectrales de frecuencia de una señal dada, se puede optimizar el diseño de un sistema para la señal portadora del mismo. Refierase al uso de un analizador de espectros.
Las series de Fourier tienen la forma:
Donde y se denominan coeficientes de Fourier de la serie de Fourier de la función
Definición de la serie de Fourier[editar]
Si es una función (o señal) periódica y su período es , la serie de Fourier asociada a es:
Donde y son los coeficientes de Fourier que toman los valores:
Por la identidad de Euler, las fórmulas de arriba pueden expresarse también en su forma compleja:
Los coeficientes ahora serían:
Limitación en el ancho de banda de las señales[editar]
La relación de lo presentado en la subsección anterior se puede ejemplificar mediante la transmisión del carácter ASCII "b", se va a transmitir la cadena binaria 01100010. El análisis de Fourier produce lo siguiente:
Al transmitir datos se pierde cierta potencia durante el proceso, ningún emisor lo puede evitar. Si todos los parámetros de Fourier disminuyeran en forma proporcional, la señal producida se reduciría en amplitud pero no se distorsionaría. La distorsión se provoca porque todas las plantas de transmisión disminuyen los componentes de la serie de Fourier en diferentes valores. Las amplitudes se emiten, en la mayoría de los casos sin ninguna atenuación desde 0 hasta (Usando el ciclo/seg o Hertz como unidad de medida) y todos los valores que superen este límite serán atenuados. El rango de frecuencias que se emite sin necesidad de atenuarse se lo conoce como ancho de banda. Este corte no se produce en forma abrupta en la práctica, el ancho de banda varía desde 0 hasta la frecuencia en la que el valor de la amplitud es disminuido a la mitad de su valor original.
Tasa de datos máxima de un canal[editar]
Artículo principal: Teorema de muestreo de Nyquist-Shannon
En 1924, Harry Nyquist trabajando para la empresa AT&T llegó a la conclusión de que un canal incluso perfecto tiene una capacidad de transmisión limitada1 Logro una ecuación que calcula la tasa máxima de un canal libre de ruido de ancho de banda finito. Shannon extendió en 1948 esta fórmula a un canal termodinámico, que tiene ruido aleatorio.
Nyquist demostró que si se emite una señal a través de un filtro que permita el paso de señales bajas de ancho de banda H, la señal puede ser recompuesta tomando 2H (exactas) muestras por segundo. Las señales que se pueden muestrear con una rapidez mayor a 2H veces por segundo ya han sido filtradas por lo que es inútil hacerlo.
Si la señal se compone de V valores discretos, el teorema de Nyquist establece:
tasa de datos máxima = 2H
Un canal de 3KHz no puede transmitir señales binarias a una tasa mayor de 6000 bps, por ejemplo.
Para un canal con ruido la situación se complica notoriamente, el ruido aleatorio causado por la temperatura siempre está presente a causa del movimiento de las moléculas del sistema. La relación señal a ruido es la cantidad de ruido térmico presente que se mide por la relación existente entre la potencia de la señal y la potencia del ruido. Si S es la potencia de la señal y N la potencia del ruido, la relación entre los valores es S/N y por lo general se usa la relación . Esta unidad se conoce como dB. La fórmula principal de Shannon es:
número máximo de bits/seg=
Shannon dedujo su resultado aplicando argumentos de la Teoría de la Información y es válido para cualquier canal con ruido térmico.2
Medios de transmisión[editar]
Artículo principal: Medio de transmisión
El medio de transmisión constituye el canal que permite la transmisión de información entre dos terminales en un sistema de comunicación.
Las transmisiones se realizan habitualmente empleando medios físicos y ondas electromagnéticas, las cuales se vuelven susceptibles al ser transmitidas por el vacío.
Entramado[editar]
La capa física le proporciona servicios a la capa de enlaces de datos con el objetivo que esta le proporcione servicios a la capa de red. La capa física recibe un flujo de bits e intenta enviarlo a destino, no siendo su responsabilidad entregarlos libre de errores. La capa de enlace de datos es la encargada de detectar y corregir los errores. Los errores pueden consistir en una mayor o menor cantidad de bits recibidos o diferencias en los valores que se emitieron y en los que se recibieron.
Un método común de detección de errores es que la capa de enlace de datos separe el flujo en tramas separadas y que realice la suma de verificación de cada trama. Cuando una trama llega a su destino se recalcula la suma de verificación. Si es distinta de la contenida en la trama es porque ha ocurrido un error y la capa de enlace debe solucionarlo.
Funciones y servicios de la capa[editar]
Las principales funciones y servicios realizados por la capa física son:
Envío bit a bit entre nodos
Proporcionar una interfaz estandarizada para los medios de transmisión físicos, incluyendo:
Especificaciones mecánicas de los conectores eléctricos y cables, por ejemplo longitud máxima del cable
Especificación eléctrica de la línea de transmisión, nivel de señal e impedancia
Interfaz radio, incluyendo el espectro electromagnético, asignación de frecuencia y especificación de la potencia de señal, ancho de banda analógico, etc.
Especificaciones para IR sobre fibra óptica o una conexión de comunicación wireless mediante IR
Modulación
Codificación de línea
Sincronización de bits en comunicación serie síncrona
Delimitación de inicio y final, y control de flujo en comunicación serie asíncrona
Multiplexación de Conmutación de circuitos
Detección de portadora y detección de colisión utilizada por algunos protocolos de acceso múltiple del nivel 2
Ecualización, filtrado, secuencias de prueba, forma de onda y otros procesados de señales de las señales físicas
La capa física se ocupa también de:
Configuración de la línea punto a punto, multipunto o punto a multipunto
Topología física de la red, por ejemplo en bus, anillo, malla o estrella
Comunicación serie o paralela
Modo de transmisión Simplex, half duplex o full duplex
Subcapa de señalización física[editar]
En una red de área local (LAN) o en una red de área metropolitana (MAN) que usa la arquitectura OSI, la subcapa de señalización física es la parte de la capa física que:
se relaciona con la subcapa MAC que es una parte de la capa de Enlace de Datos
realiza la codificación de caracteres, la transmisión, la recepción y decodificación
Fuente: Estándar Federal 1037C
Ejemplos[editar]
Ejemplos de protocolos[editar]
V.92 red telefónica módems
xDSL
IrDA capa física
USB capa física
Firewire
EIA RS-232, EIA-422, EIA-423, RS-449, RS-485
ITU Recomendaciones: ver ITU-T
DSL
ISDN
T1 y otros enlaces T-carrier, y E1 y otros enlaces E-carrier
10BASE-T, 10BASE2, 10BASE5, 100BASE-TX, 100BASE-FX, 100BASE-T, 1000BASE-T, 1000BASE-SX y otras variedades de la capa física de Ethernet
SONET/SDH
GSM interfaz radio
Bluetooth capa física
IEEE 802.11x Wi-Fi capas físicas
Ejemplos de equipos Hardware[editar]
Repetidor
Hub Ethernet
Módem
Nota: Capa física Asociado con la transmisión de cadenas de bits sin estructura sobre un enlace físico. Responsable de las características mecánicas, eléctricas y procedurales que establecen, mantienen y desactivan el enlace físico.
No hay comentarios:
Publicar un comentario